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EMISSION OF PHOTONS AND ELECTRON-POSITRON PAIRS IN 
A MAGNETIC FIELD 

N. P. Klepikov 

ABSTRACT. This article is a study of the luminous electron, 
electron-positron pair production, and single-photon anni- 
hilation of pairs in a strong magnetic field from the stand- 
point of relativistic quantum theory. Stationary wave func- 
tions are derived and the probability of particle transforma- 
tions in a magnetic field is examined. Asymptotic equations 
are derived. The emission spectrum of the luminous electron 
is examined with consideration of the electromagnetic field 
as a perturbation. The probabilities of single-photon and 
two-photon annihilation of electron-positron pairs are com- 
pared. Transformations of a photon to an electron-positron 
pair and of electrons t o  eiectron-photon pairs are discussed. 

The phenomenon of the luminous electron, pair production by photons and 
electrons, and the single-photon \annihilation of pairs in a magnetic field 
are examined using relativistic quantum theory. 
valid for very strong magnetic fields, where the emission intensity of 
electrons differs substantially from the intensity calculated by classical 
theory. 

/19* - 
The results obtained are 

1. Wave Functions and Matrix Elements 

Quantum theory of the luminous electron has recently drawn the attention 
The of many investigators who have obtained, however, only partial results. 

need arises, therefore, to examine the theory of this phenomenon in greater 
detail than it has been studied up to now, and also to construct the theory 
of other particle transformations in a magnetic field with the help of this 
mathematical tool. 

This article is the development of articles [l-41 on quantum theory of 
the luminous electron, where the applicability of computations of emission 
intensity is not limited here to the trivial consideration of quantum 
corrections to classical formulas. Also examined are phenomena related 
to the creation and annihilation of electron-positron pairs in a magnetic 
field. 

In determining the probability of particle transformations in a magnetic 
field we will, first of all, find the stationary wave functions of electrons 
in the magnetic field as eigenfunctions of the following complete system of 

* Numbers in the margin indicate pagination in the foreign text. 
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commuting ope ra to r s :  energy ope ra to r  

- t i  & = cpla(-s- v - C A) + p,mca, 

opera to r  of  t h e  p r o j e c t i o n  of momentum on t h e  magnetic f i e l d  

ope ra to r  of t h e  p r o j e c t i o n  of momentum on t h e  s p i n  

and ope ra to r  of  t h e  y-coord ina te  of the c e n t e r  of  r o t a t i o n  

I 1 ch a 
Yo=-- - -  i PN dx ' 

1 

assuming t h a t  t h e  z a x i s  i s  d i r e c t e d  along t h e  magnetic f i e l d  and t h e  v e c t o r  
I p o t e n t i a l  has t h e  form 

The e igenfunct ions  of t h i s  system of opera tors  are  as fo l lows:  I ! !  

--- 
01 = )/+ ( 1  + E  -$), p = V+(l - e  +), 

(1.8) . 
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-.-_ - 
H,(E) =(A/: 1 1 ~  (q i s  t h e  s tandard Hermite polynomial,  

'"YV'l$- e' k = v k i  4- !d~, skh i s  the eigenvalue of  ope ra to r  (1 .3 ) ,  s = t 1, 
- - k  

Y 

Z = 0 ,  1, 2 ,  . . .  i s  an i n t e g e r ,  y = eH/eA. 
E = t 1, 

The energy of  t h e  e l e c t r o n  E = EeRK, 

momentum along t h e  f i e l d  p 

c e n t e r  of r o t a t i o n  yo = - k l / y ,  - 00 < k ,  < 00. 

= Ak3,  - m < k3 < w and t h e  y-coord ina te  of t he  z 

From (1.9)  fol lows 

(1.10) 

where H o  = m2e3/eA = 4.67*10130e. By transforming t h e  coord ina tes  and 

c a l i b r a t i o n  o f  t h e  p o t e n t i a l  i t  i s  easy t o  e s t a b l i s h  t h e  correspondence of t h e  
func t ions  of (1.6) t o  t h e  func t ions  found by o the r  au thors  f o r  o t h e r  s e t s  of 
ope ra to r s  (see [ 3 ] ) .  

* \  
We w i l l  now examine t h e  ma t r ix  elements of  t h e  ope ra to r  f o r  t h e  

By i n t e g r a t i n g  wi th  r e spec t  t o  t h e  x r e s p e c t i v e  wave func t ions  of (1 .6 ) .  

and z coord ina te s  we f i n d  6 < , X l + k i k 3 , x 3 t k j ,  6' and t h e  i n t e g r a l  with r e spec t  t o  y 

- y i e l d s  
ax = a'A'Eljb I (I', 1 - 1) f s'z'H'EsFA I(1'  1 t I )  f 
+ e's'fYA'.y~B I (l', I - 1) f E'P'B'QA I (I' - 1, I), (1.11) 

., 

- \  - 
a,, = i { .- a'A'spB I (l', I - 1) + S'a'B'EsFA I(1' - 1 , 1)  -- 
- E ' > $ ' A ' S ~ ~  I (l', I - 1) + e'i3'B'aA I (I' - 1, I)), (1.12) 

- 
a# = a'A'E,QA / (l ' ,  I) - s'a'B'@ I (I' - 1, 1 - 1) + 

+ E's'P'A'aA I (l', I )  - E'B'E's~B I (I' - 1, i! - I ) ,  (1.13) 

where t h e  c o e f f i c i e n t s  are determined by equat ions (1.7) and (1.8) and 
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m 

where 2 - > 2 ' , q = (xi -1- %;)/~TP 7 = 3rctg odxl)*l I n t e g r a l  (1.14) i s  found by con- /a 
v e r t i n g  t o  t h e  v a r i a b l e  z = y f i - { -  (Z'k, + Z, -ka)/2]/7 [ the  i n t e g r a t i o n  curve 

t r a n s f e r r i n g  t h e  curve of I f o r  t h e  s t r a i g h t  l i n e  Z = - ( i x &  vJ + XI, 
i n t e g r a t i o n  t o  t h e  t r u e  a x i s ,  us ing  t h e  e q u a l i t y  

(1.15) 

and making use  of  t h e  o r thogona l i ty  of Hermite 's  polynomials.  
r e l a t i o n  % 

By us ing  t h e  

(1.16) (I - r ) !  

it i s  easy  t o  f i n d  ( cons ide r ing  thesymmetry o f t h e  func t ion  of  ~ F o  with 
r e s p e c t  t o  i t s  parameters ) ,  t h a t  

Summation of  t h e  s p i n  v a r i a b l e s  s and s '  y i e l d s  

[ I+  (l ' ,  1 -- 1) I(1' - 1, 1)  + I+ (1' - 1, I )  I ( l ' ,  I - I)], + K K '  
EE'Y v-17 

(1.17) 

(1.18) 
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[ I / ( I ' ,  I - 1) 12 + l / ( I ' -  1, 1)  121 - 3  

c, s'-*1 

r''yfiF KY' [ I +  (I', I - 1) / ( 1 '  - 1, I) + I+ (I' - 1, I) I (l', 1 - l)], (1.19) - 

- -- FE'Y1rll' [ /+ ( l ' ,  f)l(1' - 1, I - I )  + I "  (I' - 1 ,  I - 1) I (f', I ) ] ,  
KK' (1.20) 

Henceforth it w i l l  be necessary a l so  t o  r ep resen t  t h e  i n t e g r a l s  of  (1.14) /x 
i n  another  form. By us ing  t h e  r e l a t i o n s  

21 I;; (a i- 1; y + 1; z )  = *; ,f=, ( a  + 1; 7; z)  - 7 ,F, (a ;  r; z), (1.24) 
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Then, by using the equation 

. 
we find 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

Combining (1.29) with (1.26) and (1.27) we have 

Thus, the four integrals j ( l ' ,  i) ,  I ( f ' ,  1-  l ) ,  I ( 1 ' -  I ,  1),1 I ( 1 ' -  1, 1'- 1): are 

expressed through the two functions ~ ( r ,  1) and 

2. 

d l ( h  maq, 

Asymptotic Formulas For Matrix Elements With Large Parameters 

In order to avail ourselves of the possibility of investigating particle 
transformations for large energies, we will have to find the asymptotic formulas 
for the integrals of (1.14) entering into the matrix elements, which are use- 
ful in those cases where the numbers Z', 2 - 2' and q are simultaneously 

large. After substituting - ~ - + - l c o s 2 a ,  1-Pi + l - ~ f S i l l Z a f  1 @<'%,-I-) 
and q + Z C  in the parameters of the degenerate hypergeometric function 

- 
l F l ( - l ' ;  l-lf'+ 1 ; q )  we will make use of the usual integral representation , 
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IF, (- 1 cos? a ;  1 sin2 a + 1 ; 1C) =; 

where the contour C passes around the point t = 0 in the positive direction. 
The expression after the exponent sign in the integral of (2.1) has 
stationary points under the relation 

The points $ 0  lie on the real axis if 

and, consequently, the function under consideration will be monotonic f o r  
2 + a. Otherwise, the points to are complex, and the asymptotic behavior of  
the function will have an oscillating character (see [SI, pp. 246).  We will /B 

Fig. 1. Boundary of  Mono- 
tonicity bf the Function 1F1 

(-Z', n + 1, 4 )  

not examine the latter possibility, since, 
owing to the law of conservation of energy, 
the first condition of (2.3) is always 
satisfied for the luminous electron, and the 
second condition of (2.3) is satisfied in 
the case of the creation and annihilation 
of pairs. Let us assume that 

5 = (1 - C O S a ) ' s e c h f ! .  If the second 

condition of (2.3) is satisfied, all cal- 
culations are analogous to the case under 
consideration, and it will be necessary only 
to replace cos c1 by - cos c1 and sech B by 

'sec I': (0 < p < +2). 

The condition B = 0 gives the boundary 
of monotonicity of the function of 1F1. In 

the coordinates 1' > 0, It = 1 -I' > 0, Q > 0 
the equation of the boundary (Figure 1) will 
have the form 

(equation of an elliptical cone). The 
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region of monotonicity is located outside the cavity of this cone. 

Let us take in (2 .2)  the positive radical sign [for the second condition 
of (2.3) it is negative], since it is only here that the integral, after 
integration, approaches the contour of the steepest descent passing through 

to. We will further substitute t<f,,e'I . .  and obtain the equation 

X exp{1[(1 -co~a)~sech~t,f In (1- to) -cos2a( lnto+ni ) ] }  \ e-l'dt; 
6; 

where 

We will expand -T in powers of t: 

- 7 = $ 2  + v f 3  + a14 + . * ., (2 .7)  

where 

I& = V/ECos'/s a (1 - cos a),  Y = - cos? a (1 - cos a) ,  
a = - COS* a (1 - cos a)2. ( 2  9) 

The conversion of p to zero on the boundary of monotonicity makes it impossible 
to obtain for the asymptotic forumla uniformly suitable for 5 -+ 0 using the 
saddle-point method. 
in ( 2 . 7 1 ,  but both first terms simultaneously [ 6 ] .  
integral with - T from (2.7) for the contour Imr = 0, we will have the 
integral with 

Therefore, f o r  Z >> 1, we will consider not one term 
Then, in addition to the / 2 4  

8 
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i n  t h e  complex p lane  T = U + ZV f o r  t h e  contour 

(2.11) 

I t  i s  easy t o  see t h a t  t h e  d i f f e r e n c e  of t h e s e  i n t e g r a l s  i s  
m 

(2.12) 

In  (2.12) t h e  va lues  t and T on t h e  upper h a l f  o f  t h e  contour  are t o  be  
considered.  Finding t h e  i n t e g r a l  with respec t  t o  t h e  2'-contour by t r a n s -  
f e r r i n g  t h e  curve of  i n t e g r a t i o n  of t h e  asymptote, we f i n d  

(2.13) 

where KJ. i s  t h e  Bessel func t ion  o f  t h e  imaginary argument. Using (2.12) 

as shown i n  [ 3 ] ,  w e  may eva lua te  the  upper bound of e r r o r  i n  t h i s  cal-  
c u l a t i o n  and f i n a l l y  o b t a i n  

1 3  

1 F , ( - l c o s 2 a ;  2sin'a-J- 1; 1(1 - c o ~ a ) ~ s e c h h ) =  

x cxp  ( I  ((1 - cos u)? sech i', to I -  In ( I  - f , )  - cos? o. ( I n  f, f- d)]) x 

(2.14) 

Now i t  i s  easy t o  s e e  t h a t  (2.14) i s  v a l i d  f o r  2' >> 1 and f o r  any sech 6 .  For 
B -+ 0,  we o b t a i n  from (2.14) t h e  first two terms of t h e  expansion o f  1F1 by 

t h e  sadd le -po in t  method. 
u n i t y .  By s u b s t i t u t i n g  i n  (2.14) cos  a. by - ' c o s  a and B by if3, t h e  expression 

obta ined ,  f o r  

formula w e  rep laced  t h e  func t ion  of ~ F o  by u n i t y  ( f o r  z. >> 2 and z >> 2'). 

For B -+ ~0 t he  l e f t  h a l f  o f  (2.14) t r ends  toward 

IT 
-+ 7, t r ends  toward t h e  r i g h t  h a l f  of (1 .16) ,  i f  i n  t h e  l a t t e r  

We w i l l  now f i n d  t h e  approximate expression f o r  t h e  i n t e g r a l  I (Z', 2) 
e n t e r i n g  i n t o  t h e  mat r ix  elements,  assuming t h a t  sech B = 1 - 4 ,  5 << 1. 
C o l l e c t i n g  a l l  f a c t o r s  and expanding both t h e  argument of t h e  func t ion  of  
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K 
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find 

and the product on the left of this function in powers of c, we 

(2.15) 

if we disregard the values of the order of 2 E 2  in comparison with Zg 1/2* . 
In the original variables 

Differentiating with respect to q ,  we find 

For the second region of monotonicity 

(2.16) 

(2.19) 

3. Emission Spectrum of the Luminous Electron 

We will examine the probability of transition of an electron located in a 
constant and uniform magnetic field to a lower level of positive energy with 
the emission of a photon by viewing the electromagnetic field of emission as 
a perturbation. We will take the energy of perturbation in the usual form: 

-+ + where AK and C ~ K  are the momentum and energy of the photon, wherewon 

/25 

* Poorly legible on original copy 
10 
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Employing t h e  usua l  c a l c u l a t i o n  according t o  t h e  method of  nons ta t ionary  
theory  of 
p r o b a b i l i t y  of  t r a n s i t i o n  

pe r tu rba t ion  and assuming t h a t  kl = k3 = 0,  we w i l l  f i n d  t h e  

-+ 
where t h e  v e c t o r  components of  a r e  def ined i n  (1.11) - -  (1 .13) .  The laws of  
conserva t ion  t a k e  i n t o  account t h e  r e c o i l  of t h e  e l e c t r o n  and t h e  conservat ion 
of energy ( E E '  = 1): 

Now it  i s  easy t o  f i n d  

a (K -K-X)  = 
, 

where 

By mul t ip ly ing  t h e  p r o b a b i l i t y  o f  emissior, by t h e  energy of  t h e  photons 
C ~ K ,  

f i n d  t h e  emission i n t e n s i t y  
averaging t h e  i n i t i a l  s p i n  s ta tes ,  and adding t h e  f i n a l  s t a t e s ,  we w i l l  

The express ion  wi th in  t h e  braces  i n  ( 3 . 8 )  i s  obta ined  when applying ( 3 . 2 )  
t o  t h e  p r o b a b i l i t y  of  (3 .3 ) ,  with cons idera t ion  o f  t h e  condi t ion  t h a t  k 3  = 0.  
Th i s  expres s ion ,  as we may e a s i l y  prove, does not  depend on angle  0.  
fo re ,  i n  preserv ing  our n o t a t i o n ,  w e  may se t  (p = 0 i n  ( 3 . 8 ) .  

There- 
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We will now use equations (1.18)--(1.23) and (1.29)--(1.31), assuming that 
2 >> 1 and 2' >> 1, and we will consider that 1- [q/(vl-- ] h ' ) 2 ]  << 1 , where 
the particles have high energies. Then, assuming 0 = (./a) + 9 ,  (I) <<x/2, * 

and using (2.16) and (2.17) , disregarding the values p and p f  in comparison 
with 2 and 2 '  in all places where the main terms are not cancelled, and then 
proceeding from the summation with respect to n to integration, we obtain1 

(3.91 

For the limiting angle of emission we obtain, as in classical theory, I / .J~ = p/Z, 
or 

1 
q?o tnc21E. , (3.10) 

For n << the angle may be even greater. 

Let us now proceed to the frequency o f  emission and express it through 
y = o / w  where the critical frequency is cr ' 

(3.11) 

~~ 

Quantum corrections found in [7] to the spectrum partially coincide with those 
which may be obtained from formula (3.91, but the most important correction 
term in intensity of  the order of  n5/3/Z f o r  8 =  IT/^ and n << (1 - @ 2 ) - 3 / 2  (in 
our designations) is omitted there. A l s o  not found in [7] is the correction 
to the spectrum integrated with respect to the angles and complete intensity. 
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and R i s  t h e  r a d i u s  of t h e  o r b i t .  Then we w i l l  f i nd  

m 

h5 dx f 2 2 S z  [,<a ( 2 + (1 - y )  2 I/ .  2f (1-y) 2 
-vch'x )ch3xshaxdx+ 

u 
m 

( 3 .  i 2 j  

where 

z = 3 (Ij'Irru?)? (ItlnicR). (3.13) 

/2 The s p e c t r a l  emission d i s t r i b u t i o n  (3.12) of t h e  luminous e l e c t r o n  (Fig- 
u r e  2) depends i n  quantum theory on a s i n g l e  parameter z ,  while  i n  c l a s s i c a l  
theory  t h e  form of  t h e  spectrum (as  a func t ion  of w/w ) does not  depend 

on t h e  energy of t h e  e l e c t r o n .  
d i s t r i b u t i o n  t o  t h e  l i m i t  f o r  z + 0 i s  easy t o  check by us ing  t h e  equat ion 

c r  

The co r rec tness  of t h e  passage t o  c lass ical  

(3.14) 

which i s  r e a d i l y  proved [3] by us ing  Lerkh's Theorum. 

For z + 0,  formula (3.11) f o r  wcr t u rns  i n t o  a c l a s s i c a l  express ion ,  and 

f o r  E + ~0 

t h e  energy of t h e  e l e c t r o n .  
t h e  energy o f  t h e  photon i n  the  peak of t h e  spectrum t r ends  toward 

13 



Fig. 2 .  Shape of Luminous Fig. 3 .  Complete Intensity 
Electron Emission Spectrum. of Luminous Electron Emission. 

4. Complete Intensity of Emission 

will reduce (3.12) to the Assuming y c~I~x/[:! + (1 - y )  Z] = t ,  si1 x = tg 0,' 

form 

[ [ I  +( 1 + t ~ c o s ~ ( 1 ) ~ ] K ~ , ,  (i) -1- [ 2  sin' 0 (1 + t z  cos30) + f2z2  cosc Q] /<;, (t)}.l (4.1) 

The dependence of this integral on functions of  z is illustrated in 
Figure 3 .  Using Formulas 

we will find (4.1) in the form of the integral 
- 
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Considering the reduction in the bands lying to the left of the contour, it 
is easy to find the expression for emission intensity in the form 

For z >> 1 we obtain the expansion 

Shifting the contour in (4.5) to the right, we find 

The first terms of the asymptotic expansion of this total for z << lhave 
the form 

In particular, by limiting ourselves in (4.9) to the first two terms, we 
obtain the result 

(4.10) 

15 



found a l s o  i n  [4] .  I n  p r a c t i c a l  u n i t s  we have 

1 I I = 1 -- 83. Io-~E:"*~~/ R ~ . I  
C l  

(4.11) 

If t h e  energ ies  of t h e  e l ec t rons  vary  i n  t ime according t o  t h e  law 

E=E0sin(d/2T) (0 ,<t<71, we w i l l  have, i n s t ead  of (4 .10) ,  

(4.12) /E  

The dependence of 7 on z i s  i l l u s t r a t e d  i n  Figure 3 by t h e  broken l i n e .  

The f i rs t  c o e f f i c i e n t  i n  (4.9) corresponds t o  those  obtained e a r l i e r  i n  
[4] by a d i f f e r e n t  method [ 2 ] ,  having a s i g n i f i c a n t l y  narrower range of 
a p p l i c a b i l i t y  ( z  << 1 ) .  

From t h e  formulas obtained it is c l e a r  t h a t  c l a s s i c a l  theory  i s  v a l i d  
f o r  computing t h e  emission i n t e n s i t y  f o r  t h e  condi t ion  

(4.13) I mc3 4: ( rnc I=? /3~) ' / * ,  

a l s o  obta ined  i n  t h e  above c i t e d  works on quantum theory of t h e  luminous 
e l e c t r o n  ( see  a l s o  [8.12].  Experimental s t u d i e s  [13-151 a l s o  p e r t a i n  t o  
g r e a t e r  l i m i t a t i o n s  of t h e  a p p l i c a b i l i t y  of c l a s s i c a l  theory  i n  computing 
emission i n t e n s i t y  than condi t ion (4.13) . 

Our theory,based on t h e  assumption t h a t  E/mc2 >> 1, would be v a l i d  i f  
t h e  peak of t h e  emission spectrum f a l l s  t o  t h e  las t  h igher  harmonics ( t h e  
v a l i d i t y  of  t h e  assumption 2 '  >> 1 i s  v i o l a t e d ) .  
(3.11) reaches  t h e  harmonic y1 = 2 - 1, we w i l l  f i n d  t h e  condi t ion  of app l i ca -  
b i l i t y  of t h e  proposed theory:  

Assuming t h a t  t h e  peak of 

(4.14) 

Th i s  energy i s  much g r e a t e r  than  t h a t  of (4.13) f o r  macroscopic va lues  
i 'k- / N l C ~  . ,.: nlcR 311. 

of t h e  r a d i u s  of t h e  o r b i t .  

5 .  Single-Photon Annih i la t ion  of Electrons and Pos i t rons  i n  a Magnetic Field 

Let u s  examine [3] t h e  t r a n s i t i o n  of an e l e c t r o n  from t h e  s t a t e  of p o s i t i v e  
energy i n  a magnetic f i e l d  t o  t h e  s t a t e  of nega t ive  energy i n  t h e  same f i e l d  
with t h e  emission of a photon, making use of (3.1),  (3.2) and assuming -1. 
We w i l l  select a coord ina te  system such t h a t  we w i l l  ob t a in  k = k '  

1 1 
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and k 3  = k r 3 .  
the electron and positron spins. and addine the values of the momentum 
of the photon, we will find the probability of annihilation per unit time 

Then, averaging the probability of transition with respect to 

whereupon ~1 = K3 = O  and K = K f K' because of the laws of conservation. This 
probability is not equal to zero, since part of the pair's momentum will incor- 
p r ~ t e  t h e  magnctic ficld. Since ' \I  = 0, t h e  photon i s  emitted i n  a d i r e c t i o n  
perpendicular to the line connecting the centers of rotation of the particles. 

The multiplication of the probability of (5.1) by the number of electrons 
N with which a positron can be annihiliated is equal to the recriprocal of 
the lifetime of a positron in a given electron beam, where n = N/L L 

density of the stream of electrons in the beam. 
case of two-photon annihilation occuring in the absence of an external field, 
the recriprocal of the lifetime of a positron is proportional to the volumetric 
density of the electrons. 

is the x z  
We will recall that in the 

m, 
l i l t :  effeciive c r u s s - s e c t i u r i  u f  irarisformaiion cannot be defined here, 

since the incident waves cannot be regarded as planar at any distance. 
this very circumstance which explains the inability to regard a magnetic 
field in a given transformation as a perturbation of free travel, as may be 

therefore analogous not to single-photon annihilation of positrons in atoms 
in the Bohr approximation, but to calculations dealing directly with the 
electrical field (a detailed list of references on the problems of the 
annihilation of electrons and positrons, as well as on the creation of pairs 
of these particles and the application of these phenomena to many problems in 
physics,is furnished in [ 3 ] ) .  A determination of the effective cross-section 
is also impossible in the reverse transformation (creation of photon pairs in 
a magnetic f i e l d )  since a uniform magnetic field is not a spatially restricted 
phenomenon. 

It is 

done with the electrical field of the atomic nucleus. Our calculation is /30 
I 

Let us assume that E >> me2 and E'  >> m e 2 .  Then, using (1.18), (1.20), 
(1.29), (1.30), and (1.31), together with (2.18) and (2.19), we obtain for 
the 1i.fegime of a positron in a magnetic field 



In particular, for E = E '  and p = 0 z 

The function f lx)  is shown graphically in Figure 4. 

f ( X )  

4f  42 ii/\ its maximum for 

sira ( 2 1 ~ )  2''n 
x<1, f ( x ) z  12Yx 

The probability of annihilation reaches 

HO 
0,33rllca H 0 (5.5) O f 2 3 4 5 x  

Fig. 4. Determination of the 
Prvbabiiity of Single-Photon 
Annihilation of Electron and 
Positron in a Magnetic Field 

In practical units 

and 

Here the energy of the particles is measured in billions of electron-volts, 

and time in seconds. 
energy and magnetic field justifies the use of our approximations, which 
are valid for high energies of the particles. 

the magnetic field is measured in billions of Oersteds, density in cm-2, /x 
The sharp decrease in probability with a decrease in 

We will recall now that in the limiting case H >> Hn r .*n  have q = ~ ~ / 2 y  << 1 
, \ / ( f ' , ~ ) \ = l ~ ( ~ ' - l ~  _ I  and for 2 = 2' - > 1 and p ,  < <  

/ ( l ' ,  1 -  111 = l/(i'- 1, I) 1-k I ,  

l - l ) l= ' r  

hence, 

To compare the probability of single-photon annihilation of electrons 
and positrons in a magnetic field with the probability of their two-photon 
annihilation, it is first necessary to find the ratio between densities n and p .  
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In a rather narrow beam of particles p=n/anR,  where K = ( u / c ) ( E / e H )  and 

If H << H o ,  keeping in mind that for two-photon annihilation 

we obtain for E = E ( H )  max 

(5.10) 

Hence, the relative probability of single-photon annihilation here is low, 
but it increases as H increases. 

from (5.8) and (5 .9)  

For H >> H o  and 2, << e, I/~,=pncr, ,  2 '  and 

(5.11) 

In this case the relative probability of T O / T ~  decreases with the field. 

When H >> HO it is possible to make only a qualitative comparison, since the 
independence of T O  on H and the applicability of (5.9) in the last case are 
totally not apparent. These results do indicate, however, that when H - H O  
the ratio - C H / T ~  may be of the order of 1/137, i.e. single-photon annihilation 
will predominate (or will be a t  least of the same order of  probability as two- 
photon annihilation). 
annihilation of electrons and positrons in a magnetic field has not yet been 
treated in literature. 

The possibility of the process of single-photon 

6. Creation of Electron-Positron Pairs BY Photons in a Magnetic Field 

We will find [3] the probability ofthe phenomenon which is the antithesis 
of the above, i.e. the transformation of a photon to an electron-positron pair 
in a magnetic field--the unique nonlinear effect of the interaction of 
electromagnetic fields. By taking the complex conjugate matrix elements from 
the matrix elements of  the preceding calculation and selecting a coordinate 
system such that K~ = K~ = 0, we will find k l  = k ' l  and k3 = k ' 3 ,  and for the 
probabilityoftransition per unit time, averaged with respect to the polar- 
izations of the photon, we obtain 

." "4llax - ( 0  ", r n  

.9 



Keeping i n  mind t h a t  1 '== ''ll L ~ /  ' and t h a t  t h e  moduli of t h e  ma t r ix  

elements and t h e  energy are independent of k l ,  we f i n d  

The va lue  1 / W  i s  t h e  l ifetime of the  photon i n  a magnetic f i e l d ,  and 
e/W i s  i t s  pa th .  
and with c ros s - sec t ion  S, a t  d i s t a n c e  d f o r  time 5 t h e r e  w i l l  b e  

If w e  consider  a beam of photons with energy d e n s i t y  n ( E )  

(d/c) w<c I , /  
t ransformat ions  of photons i n t o  p a l m .  II 

p o r t i o n a l  t o  t h e  volume of t h e  f i e l d .  
t h e  e f f e c t  i s  pro-  

I t  i s  easy t o  s e e  t h a t  

From ( 6 . 4 )  it i s  clear  t h a t  W i s  transformed t o  i n f i n i t y  each t ime k ,  = 0 ,  
i .e .  when xfn = l / k i  + 227 + v,t: + z'~, 1 where Z and 7, ' are i n t e g e r s ,  

7- - 
If  Z = Z ' ,  f o r  E >> me2 (E i s  t h e  energy of t h e  photon) we have 

or 

In  p r a c t i c a l  u n i t s  

I 

We see t h a t  t h e  s i n g u l a r i t i e s  of p r o b a b i l i t y  f o r  H << HO and E >>'me2 a r e  
very  f r e q u e n t l y  d i s t r i b u t e d  on t h e  s c a l e  o f  photon energy. 
w i l l  i n e v i t a b l y  be smoothed f o r  t he  a t t a i n a b l e  range of t h e  l i n e  with t h e  
d i s t r i b u t i o n  of n ( E ) .  
t h a t  i f  w e  exclude 7,' i n s t e a d  of  k 3 ,  consider ing t h a t  t h i s  va lue  changes 

20 

These s i n g u l a r i t i e s  

By us ing  t h e  law of  conservat ion of energy we f i n d  



constantly, we immediately find the probability with smooth singularities. 
Using (1.18), (1.20), (1.29), (1.30), (1:31), (2.18), and (2.19), expression 
(6.2) can be reduced to the form 

I where 

The approximation of high energies of particles and the photon is also used /33 
in this case, since when conditions 2 >> 1, and I' >> 1 are not satisfied, 
the probability is very low. The function $(E) is illustrated graphically 
in Figure 5,  where 

The maximum of the probability of 
transformation is reached for 

LA* I .  e .  I 1 .  t .  I .  I .  4 

0 41 0.2 0.3 p4 45 4647 4 E  89 lo& 
Fig. 5. Determining the Prob- 
ability of Creation of a Pair 
by a Photon in a Magnetic Field 
and 

(6.10) 

In practical units 

(6.12) 

The theory under discussion can indicate the cause of the great absorption 
of photons, even in weak fields, only if the field has sufficient magnitide, 
despite the fact that the high probability of transformation of a photon into 
a pair occurs only in very strong fields. 
a magnitude of the order of lOI9 cm 
Oe., photons with energies higher than 4 0 1 0 ~ ~  Oe should be completely smooth, 
whereupon the path of the photon with an energy of the order of 
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In cosmic magnetic fields having 
and a strength of the order of 10-5--10-6 

ev has 



much smaller dimensions than  t h e  magnetic c loud.  
in f luence  on photons of t h e  s p e c i f i e d  energy, o r  on t h e  v i s i b l e  l i g h t  of  
s ta rs .  

This  e f f e c t  w i l l  no t  have any 

In  f i e l d s  having a s t r e n g t h  of t h e  order  of l o 5  Oe t h e  minimal pa th  of t h e  
photon ( E  - lOI4 ev) i s  a t  most a few cent imeters .  

Only q u a l i t a t i v e  i n d i c a t i o n s  [8, 912 have, up t o  now, appeared on l i t e r -  
a t u r e  concerning t h e  p o s s i b i l i t y  of t h e  t r a m f o r m a t i o n  of a photon i n t o  a 
p a i r  i n  a magnetic f i e l d .  

7. Creat ion  of  Electron-Photon Pairs by E lec t rons  I n  a Magnetic F i e l d  

To f i n d  t h e  q u a l i t a t i v e  eva lua t ion  of t h e  energy of e l e c t r o n s  f o r  which we 
should expect  t h e  i n t e n s i v e  emission of  p a i r s  i n  a magnetic f i e l d  by t h e  
e l e c t r o n s ,  we w i l l  f i n d  t h e  energy o f  the e l e c t r m s  f o r  which t h e  peak of t h e  
emission spectrum of  t h e  luminous e l ec t ron  co inc ides  with t h e  maximum p r o b a b i l i t y  
of t h e  c r e a t i o n  of  a p a i r  by a photon i n  a magnetic f i e l d .  
with (6.10) t h e  energy of t h e  photon h e r e . i s  

In  accordance 

if we express  t h e  magnetic f i e l d  through. the  energy of t h e  e l e c t r o n .  

From (3.11) we f i n d  

’ After t h e  completion of  t h i s  a r t i c l e  we became aware of  [16] ,  i n  which t h e  
c r e a t i o n  o f  p a i r s  by photons i n  a magnetic f i e l d  i s  d iscussed .  
[16] i s  suggested f o r  use  only when t h e  e f f e c t  i s  very  s l i g h t  and conta ins  
t h e  c o r r e c t  exponent ia l  f a c t o r .  
i n c o r r e c t ,  s i n c e  an i n c o r r e c t  expression was used f o r  t h e  d e n s i t y  of f i n a l  
s ta tes  and t h e  approximation f o r  t he  matr ix  elements was too  rough ( the  
diminut ion of p r o b a b i l i t y  with increas ing  va lues  of 12 - 2’1 i n  our  design-  
a t i o n s  was i n c o r r e c t l y  approximated, 

The r e s u l t  of 

The o ther  f a c t o r s  i n  [16] were found t o  be  
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By equat ing (7.2) and (7.3) we f ind  

From (7.4)  we see t h a t  t h e  inf luence  of  t h e  effect  under cons idera t ion  on 
energy l o s s e s  of t h e  p a r t i c l e s  i n  a magnetic f i e l d  appears  soon a f t e r  t h e  
emission of  photons begins  t o  dev ia t e  from classical  theory.  

The au thor  expresses  h i s  h e a r t f e l t  g rad i tude  t o  professor  A .  A .  Sokolov, 
who supervised t h e  work on t h i s  theme. 

.c 
- - 
~ 
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